When used as a **Protocol Converter**, one port of the Omnii-Comm™ (configured as a master) is connected to one or more local devices. Information is collected from the local devices on a periodic basis and placed into “data base” memory onboard the Omnii-Comm™. A second port (configured as a slave port) is connected to another network and communicates using the native protocol of that system. The “data base” memory is organized to match the requirements of the second system. Requests for information are completed without delay with data from the Omnii-Comm™’s “data base”. When a command to change something in one of the local devices is received, the Omnii-Comm™ interrupts its polling cycle and immediately translates the control command into a form that the local device can understand and then sends it. Control actions occur almost immediately!

A **Polling Master** collects data from one or more external devices using their native protocol and then transfers the data to another device using its standard protocol. Each port can have a unique protocol.
When used in a **Protocol Bridge** configuration, the Omnii-Comm™ simply reads information from one device using its standard protocol and writes the data collected to another device using that device’s protocol. The read/write operations are performed at user definable rates.

An Omnii-Comm™ with 3 or more communications ports can be used as a **Data Concentrator**. When used in this mode, two or more ports are configured as master ports with protocols as needed to communicate with external equipment. An additional port is configured as a slave port and is connected to another system using yet a different protocol. Poll tables in the Omnii-Comm™ are used to relate data addresses in the external equipment to “data base” memory inside the Omnii-Comm™. The external equipment is interrogated and the data base memory updated at user definable rates.

The data base memory is organized to match the requirements of the device connected to the slave port.

Requests for information are fulfilled with data from the Omnii-Comm’s™ database without delay. When a change is needed, a command is sent to change a database location. The Omnii-Comm™ determines which remote device needs to receive the command, briefly interrupts its polling cycle, translates the command into a form the device can understand, and sends it. The Omnii-Comm™ automatically determines the connector, protocol and address of the device that will receive the command. The master does not need to know where the control point is located nor the protocol to be used to send it to its final destination. Control actions occur almost immediately!

Omnii-Comm™ configuration data is stored in non-volatile memory for immediate restart after a power failure.

The Omnii-Config™ program is used to set up the mode of operation. This program is shipped with every Omnii-Comm™ and is available for free download from our web site at any time.

Specifications

Physical
- DIN rail mountable unit 1.75”W x 5.5”H x 5.75”D

Power Requirements
- AC power 90 to 270 VAC 1 Watt*
- DC power 24 VDC 40 ma*
- DC power 12 VDC 80 ma*
* maximum operating power for a 5-port unit

Operating Environment
- 0º to 60º Celsius, 10% to 90% relative humidity

LED Indicators
- Provide status of the following signals: TXD and RXD for each port plus ERROR and ACTIVE

Protocols Supported (partial list)
- **MODBUS** Master and Slave, RTU and ASCII options
- 32-bit and “string by flow” data types permitted
- **Teledyne/Control Applications (CA)**, **Allen-Bradley DF1 Full-Duplex and Half-Duplex** with PLC 2, PLC 5, PLC5/250 and SLC 500 addressing
- **Square D SY/MAX** Point-to-Point and Multidrop
- **Omron Host Link**
- **Caterpillar CCM and DVR**
- **Sullair**
- **Custom Protocols** available, contact factory for pricing

I/O Ports
- Maximum of 5 asynchronous serial data ports
- 1 Universal Serial Data Port, sync.or async.300 to 9600 baud (in place of one async port)
- 1 Config/Diagnostic port 9-pin (always required)
- 4 ports have all modem control lines (RTS, CTS, DCD, DTR and DSR)

Serial Port Connections

<table>
<thead>
<tr>
<th>TERM</th>
<th>9-PIN</th>
<th>RS232</th>
<th>RS422</th>
<th>RS485</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>DCD (I)</td>
<td>TX+</td>
<td>TRD+</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>DSR (I)</td>
<td>RX+</td>
<td>TRD+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>RXD (I)</td>
<td>TX-</td>
<td>TRD-</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>RTS (O)</td>
<td>RX-</td>
<td>TRD-</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>TXD (O)</td>
<td>TX+</td>
<td>TRD+</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>CTS (I)</td>
<td>RX+</td>
<td>TRD+</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>DTR (O)</td>
<td>TX-</td>
<td>TRD-</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>RI (I)</td>
<td>RX-</td>
<td>TRD-</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

Identical signal names are connected internally

Order Information
- **266-300-XYZ** 3 serial ports
- **266-400-XYZ** 4 serial ports
- **266-500-XYZ** 5 serial ports
- X=1 for AC, 2 for 24VDC or 3 for 12 VDC
- Y=1 for 9-Pin “D” connectors, 2 for terminal strips
- Z=0 Reserved for future use

Miille Applied Research Company, Inc.
PO Box 87634, Houston, Texas 77287
(800) 729-0818 • (713) 472-6272 • Fax (713) 472-0318
E-mail: sales@miille.com • World Wide Web Site: http://www.miille.com

Copyright © 2007 by Miille Applied Research Company, Inc. MARC™ and OMNII-COMM™ are trademarks of Miille Applied Research Company, Inc. MODBUS is a registered trademark of Modicon.